Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Environ Res ; 214(Pt 4): 114108, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35985485

RESUMEN

Diatoms of the genus Pseudo-nitzschia are cosmopolitans spread in seas and oceans worldwide, with more than 50 described species, dozens of which have been confirmed to produce domoic acid (DA). Here, we characterized and investigated the toxicological activity of secondary metabolites excreted into the growth media of different Pseudo-nitzschia species sampled at various locations in the northern Adriatic Sea (Croatia) using human blood cells under in vitro conditions. The results revealed that three investigated species of the genus Pseudo-nitzschia were capable of producing DA indicating their toxic potential. Moreover, toxicological data suggested all three Pseudo-nitzschia species can excrete toxic secondary metabolites into the surrounding media in addition to the intracellular pools of DA, raising concerns regarding their toxicity and environmental impact. In addition, all three Pseudo-nitzchia species triggered oxidative stress, one of the mechanisms of action likely responsible for the DNA damage observed in human blood cells. In line with the above stated, our results are of great interest to environmental toxicologists, the public and policy makers, especially in light of today's climate change, which favours harmful algal blooms and the growth of DA producers with a presumed negative impact on the public health of coastal residents.


Asunto(s)
Diatomeas , Croacia , Diatomeas/genética , Diatomeas/metabolismo , Floraciones de Algas Nocivas , Humanos
2.
Environ Microbiol Rep ; 11(5): 699-707, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31286686

RESUMEN

The extent of DMSP demethylation has been hypothesized to depend on DMSP availability and bacterial sulfur demand, which might lead to niche differentiation of the demethylating bacterial community. In this study, we determined DMSP concentrations in marine snow and the ambient water over a seasonal cycle and linked DMSP concentrations to the abundance of bacteria harbouring the demethylation dmdA gene in the Adriatic Sea. In marine snow, DMSP concentrations were up to four times higher than in the ambient water and three times higher in marine snow in summer than in winter. The average dmdA:recA gene ratio over the sampling period was 0.40 ± 0.24 in marine snow and 0.48 ± 0.21 in the ambient water. However, at the subclade level, differences in the demethylating bacterial community of marine snow and the ambient water were apparent. Seasonal patterns of potentially demethylating bacteria were best visible at the oligotype level. In the ambient water, the SAR116 and the OM60/NOR5 clade were composed of oligotypes that correlated to high DMSP concentrations, while oligotypes of the Rhodospirillales correlated to low DMSP concentrations. Our results revealed a pronounced seasonal variability and spatial heterogeneity in DMSP concentrations and the associated demethylating bacterial community.


Asunto(s)
Bacterias/clasificación , Desmetilación , Sedimentos Geológicos/microbiología , Consorcios Microbianos , Estaciones del Año , Agua de Mar/microbiología , ADN Bacteriano/genética , Gammaproteobacteria , Océanos y Mares , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
Sci Total Environ ; 678: 499-524, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31077928

RESUMEN

Effective identification of species using short DNA fragments (DNA barcoding and DNA metabarcoding) requires reliable sequence reference libraries of known taxa. Both taxonomically comprehensive coverage and content quality are important for sufficient accuracy. For aquatic ecosystems in Europe, reliable barcode reference libraries are particularly important if molecular identification tools are to be implemented in biomonitoring and reports in the context of the EU Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD). We analysed gaps in the two most important reference databases, Barcode of Life Data Systems (BOLD) and NCBI GenBank, with a focus on the taxa most frequently used in WFD and MSFD. Our analyses show that coverage varies strongly among taxonomic groups, and among geographic regions. In general, groups that were actively targeted in barcode projects (e.g. fish, true bugs, caddisflies and vascular plants) are well represented in the barcode libraries, while others have fewer records (e.g. marine molluscs, ascidians, and freshwater diatoms). We also found that species monitored in several countries often are represented by barcodes in reference libraries, while species monitored in a single country frequently lack sequence records. A large proportion of species (up to 50%) in several taxonomic groups are only represented by private data in BOLD. Our results have implications for the future strategy to fill existing gaps in barcode libraries, especially if DNA metabarcoding is to be used in the monitoring of European aquatic biota under the WFD and MSFD. For example, missing species relevant to monitoring in multiple countries should be prioritized for future collaborative programs. We also discuss why a strategy for quality control and quality assurance of barcode reference libraries is needed and recommend future steps to ensure full utilisation of metabarcoding in aquatic biomonitoring.


Asunto(s)
Organismos Acuáticos , Biota , Código de Barras del ADN Taxonómico , Monitoreo del Ambiente , Biblioteca de Genes , Código de Barras del ADN Taxonómico/estadística & datos numéricos , Europa (Continente)
4.
Sci Total Environ ; 668: 171-183, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-30852195

RESUMEN

Earth temperature is rising and oligotrophication is becoming apparent even in coastal seas. In this changing environment, phytoplankton use carbon and nutrients to form important biomolecules, including lipids. However, the link between lipid production and changing environment is still unexplored. Therefore, we investigated the phytoplankton lipid production in the diatom Chaetoceros pseudocurvisetus cultures under controlled temperatures ranging from 10 to 30 °C and nutrient regimes mimicking oligotrophic and eutrophic conditions. Results were compared to plankton community's lipid production in the northern Adriatic at two stations considered as oligotrophic and mesotrophic during an annual monthly sampling. In order to gain detailed information on the investigated system, we supplemented lipid data with chlorophyll a concentrations, phytoplankton taxonomy, cell abundances and nutrient concentration along with hydrographic parameters. We found enhanced particulate lipid production at higher temperatures, and substantially higher lipid production in oligotrophic conditions. Enhanced lipid production has two opposing roles in carbon sequestration; it can act as a retainer or a sinker. Lipid remodeling, including change in ratio of phospholipids and glycolipids, is more affected by the nutrient status, than the temperature increase. Triacylglycerol accumulation was observed under the nitrogen starvation.


Asunto(s)
Monitoreo del Ambiente , Calentamiento Global , Metabolismo de los Lípidos/fisiología , Fitoplancton/fisiología , Clorofila A , Diatomeas/fisiología , Lípidos , Agua de Mar/química
5.
Environ Sci Technol ; 46(10): 5574-82, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22530744

RESUMEN

Mass appearances of the toxic dinoflagellate genus Ostreopsis are known to cause dangerous respiratory symptoms in humans exposed to aerosols. The outbreaks can appear in shallow marine waters of temperate regions around the globe. We followed a massive bloom event on a public beach on the northern Adriatic coast near Rovinj, Croatia. We identified the responsible species and the produced toxins as well as the dynamics of the event with respect to environmental conditions. Ostreopsis cf. ovata appeared in masses from September through October 2010 on a public beach near Rovinj, Croatia but stayed undetected by public health organizations. Respiratory symptoms were observed whenever humans were exposed to substrate samples containing large numbers of Ostreopsis cells. During the mass abundance of O. cf. ovata also exposure to the aerosols on the beach evoked respiratory symptoms in humans. Our measurements showed high cell abundances and high toxin contents with a stable relative contribution of putative Palytoxin and Ovatoxins a-e. Artificial beach structures proved to dramatically reduce settling of the observed Ostreopsis biofilm. Blooms like those reported herein have a high potential to happen undetected with a high potential of affecting the health of coastal human populations. Increased monitoring efforts are therefore required to understand the ecology and toxicology of those bloom events and reduce their negative impact on coastal populations.


Asunto(s)
Acrilamidas/metabolismo , Dinoflagelados/metabolismo , Eutrofización , Toxinas Marinas/biosíntesis , Agua de Mar , Acrilamidas/toxicidad , Biopelículas/efectos de los fármacos , Venenos de Cnidarios , Croacia , Dinoflagelados/citología , Dinoflagelados/efectos de los fármacos , Dinoflagelados/crecimiento & desarrollo , Ecosistema , Eutrofización/efectos de los fármacos , Humanos , Microalgas/efectos de los fármacos , Microalgas/crecimiento & desarrollo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...